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Abstract 15 
 16 
In this study we report the development of a time dependency of global dust source and its 17 
impact on dust simulation in the Goddard Chemistry Aerosol Radiation and Transport 18 
(GOCART) model. We determine the surface bareness using the 8 km Normalized Difference 19 
Vegetation Index observed from the Advanced Very High Resolution Radiometer satellite 20 
(AVHRR-NDVI). The results are used to analyze the temporal variations of surface bareness in 21 
22 global dust source regions. One half of these regions can be considered as permanent dust 22 
source regions where NDVI is always less than 0.15, while the other half shows substantial 23 
seasonality of NDVI. This NDVI-based surface bareness map is then used, along with the soil 24 
and topographic characteristics, to construct a dynamic dust source function for simulating dust 25 
emissions with the GOCART model. We divide the 22 dust source regions into three groups of 26 
(I) permanent desert, (II) seasonally changing bareness that regulates dust emissions, and (III) 27 
seasonally changing bareness that has little effects on dust emission. Compared with the 28 
GOCART results with the previously employed static dust source function, the simulation with 29 
the new dynamic source function shows significant improvements in category (II) regions. Even 30 
though the global improvement of the aerosol optical depth is rather small when compared with 31 
satellite and ground based remote sensing observations, we found clear and significant effect of 32 
the new dust source on seasonal variation of dust emission and dust optical depth near the source 33 
regions. Globally, we have found that the permanent bare land contributes to 88 % of total dust 34 
emission, whereas the grassland and cultivated crops land contribute to about 12 %. Our results 35 
suggest the potential of using NDVI over vegetated area to link the dust emission with land cover 36 
and land use change for air quality and climate change studies. 37 
  38 

 39 
1. Introduction 40 
 41 
Dust is one of the most prominent aerosol types in the atmosphere, which plays an important role 42 
in the Earth climate system (Foster et al., 2007). Numerous studies have shown the importance of 43 
dust to affect the Earth’s radiation budget, atmospheric dynamics, atmospheric chemistry, air 44 
quality, and ocean biogeochemistry over wide ranges of spatial and temporal scales (Husar et al., 45 
2001; Haywood et al., 2003; Jickells et al., 2005).  46 
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 1 
Soil particle mobilization into the atmosphere is driven mainly by the winds. In the numerical 2 
models, such process is often parameterized as a function of the friction wind (u*) or near-surface 3 
wind speed (e.g., Tegen and Fung, 1995; Ginoux et al., 2001; Zender et al., 2003; Textor et al., 4 
2006; Huneeus et al., 2011). Other factors affecting dust mobilization include soil moisture (or 5 
surface wetness) and vegetation cover (surface roughness), as dust is usually uplifted over dry 6 
surfaces with little vegetation coverage. The variations of these factors are very different in terms 7 
of time scales, for example winds vary sub-hourly, soil moisture daily to seasonally, and surface 8 
bareness seasonally to inter-annually. While all models explicitly take into account the change of 9 
wind speed and soil moisture in calculating dust emissions, they commonly employ a 10 
“climatological” land cover data for identifying dust source locations and neglect the time 11 
variation of surface bareness (e.g., Ginoux et al., 2001; Huneeus et al., 2011). Although such an 12 
approach is adequate over permanent desert locations because of little vegetation coverage there, 13 
the static dust source does not reflect the dynamic land-cover changes over other areas and could 14 
cause significant error in estimating dust emissions in some seasons. 15 
 16 
In this study, we investigate the effects of temporal variation of surface bareness on seasonal 17 
cycles of dust emissions and atmospheric loading. We use the satellite data of Normalized 18 
Difference Vegetation Index (NDVI) from the Advanced Very High Resolution Radiometer 19 
(AVHRR) to construct a dynamic dust source function map at 15-day time resolution, and apply 20 
this source function to the dust simulation with the Goddard Chemistry Aerosol Radiation and 21 
Transport (GOCART) model. Previous studies have shown that there is a statistically significant 22 
relationship between NDVI and dust loading in source regions (Zender and Kwon, 2005) and 23 
time-changing vegetation coverage data can significantly improve dust emission process (Tegen 24 
et al., 2002; Fairlie et al., 2007; Webb and McGowan, 2009; Shannon and Lunt, 2011). Some 25 
regional models have used the NDVI information to produce a continuous weighting function for 26 
dust emission (Park et al., 2010). Our study here provides an analysis of such effects on dust 27 
regions over the globe from 2000 to 2007, and then compares this dynamic source with the static 28 
source function in previous GOCART model simulations to assess the significance. 29 
 30 
In section 2, we will describe how our time resolved surface bareness map is constructed from 31 
the satellite observed NDVI. We will present the relationship among NDVI, the surface bareness, 32 
and dust source function in various source regions. We will investigate the time dependent dust 33 
source function in section 3 and its effect to the dust emission and distribution using the 34 
GOCART model and compare the simulated aerosol optical depth with satellite and surface 35 
measurement data in section 4. Discussion and summary are given in sections 5 and 6, 36 
respectively. 37 
 38 
 39 
2. Method 40 
 41 
2.1. General 42 
 43 
Dust uplifting to the atmosphere occurs mainly by sand blasting or soil bombardment, which is 44 
parameterized in GOCART assuming that the vertical particle flux is proportional to the 45 
horizontal wind flux (Ginoux et al., 2001). The emission parameterization requires the 46 
knowledge of the 10-m wind speed, the threshold velocity of wind erosion, and the surface 47 
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condition for each size class. Dust emission flux Ep (µg m!2 s!1) for a size group p is expressed 1 
as: 2 
 3 
Ep = C " S " sp " u2

10 " (u10 ! ut), if u10 > ut       (1) 4 
 5 
where C is a dimensional factor (1 µg s2 m!5), S is the dust source function or probability of dust 6 
uplifting with a value between 0 and 1, sp is the fraction of size group p within the soil (Tegen 7 
and Fung,1994), u10 is the 10-m wind speed (m s!1), and ut is the threshold velocity of wind 8 
erosion as a function of dust density, particle diameter, and surface wetness to account for the 9 
bonding effect between water and particles (Ginoux et al., 2001, 2004). Two soil types are 10 
considered for erosion: clay (particle diameters less than 1 µm) and silt (particle diameters 11 
greater than 1 µm and less then 10 µm),  12 
 13 
The dust source function S is determined by the surface bareness (B) and topographical 14 
depression features (H). Here, H is calculated from the elevation of the grid cell relative to the 15 
elevation of the surrounding areas (Ginoux et al., 2001). This method is based on the 16 
consideration that dust sediments from surface erosion are accumulated in valleys and 17 
depressions. In previous GOCART simulations (e.g., Ginoux et al., 2001, 2004; Chin et al., 18 
2002, 2009), the surface bareness B was determined based on the 1987 annual averaged satellite 19 
land cover data from AVHRR (DeFries and Townshend, 1994), which does not change with 20 
time. Although such constructed dust source collocates with the satellite observed dust “hot 21 
spots” (e.g., Ginoux et al., 2001; Prospero et al., 2002), it is a static function (denoted as SStatic 22 
hereafter) that neither reflects the land-cover change nor considers seasonal variations of soil 23 
bareness. This study therefore focuses on improving the seasonal and interannual variation of 24 
dust source function, as described in the next sections.  25 
 26 
2.2. Time-dependent surface bareness 27 
 28 
In this study, we utilized the AVHRR NDVI composite from the NASA Global Inventory 29 
Monitoring and Modeling Systems (GIMMS) (Tucker et al., 2005; Brown et al., 2006). We used 30 
the AVHRR sensor instead of the data from MODIS because of its longer record. AVHRR data 31 
is available from 1981 to 2008, and will soon be extended to 2012. Although here we use the 32 
NDVI only during eight years in the MODIS period, we develop this method so that the model 33 
can be run over the longer time period.   34 
 35 
The GIMMS data has been corrected to reduce the influence of water vapor due to the wide 36 
spectral bands in AVHRR (Tucker et al., 2005). Satellite drift correction has been applied to this 37 
dataset to further remove artifacts due to orbital drift and changes in the sun-target-sensor 38 
geometry (Pinzon et al., 2005). 39 
  40 
NDVI is calculated from the visible (VIS) and near-infrared (NIR) light reflected by vegetation: 41 
 42 
NDVI = (NIR-VIS)/(NIR+VIS)       (2) 43 
 44 
NDVI is usually very low when the ground is bare and gets higher as ground is covered by more 45 
vegetation. Here, we choose a threshold NDVI value of 0.15, below which the surface is 46 
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considered to be bare. This threshold will vary depending on the dataset used due to each 1 
sensor’s unique design and sensitivity to vegetation (Brown et al., 2006).  2 
 3 
Using the 8-km spatial resolution AVHRR NDVI data (NDVI8km) and the bareness threshold 4 
NDVI value, we have constructed a global surface bareness (B) map in 1°"1° spatial resolution 5 
from 1981 to 2008 with the same time resolution as the AVHRR NDVI data at two times per 6 
month. In each 1°"1° gridcell, B is calculated as the ratio of the number of NDVI8km pixels that 7 
are below 0.15 to the total number of NDVI8km pixels within the gridcell. The 8-year mean 8 
global distributions of NDVI and B are shown for January and July (Figure 1). High NDVI 9 
appears in densely vegetated areas such as in Amazon and South Africa, and low NDVI appears 10 
in desert regions such as Sahara and Middle East. The constructed B map shows little seasonal 11 
variability in desert belt regions i.e., Saharan, Arabian, and China Deserts, but in other dry 12 
regions it reveals stronger seasonal changes. 13 
 14 
3. Dust source function 15 
 16 
3.1. Seasonal variations 17 
 18 
The new dust source function is constructed using the aforementioned time resolved soil 19 
bareness and topographic features to identify the probability of location and time of dust 20 
uplifting. The 10-minute topography map from the Navy Fleet Numerical Oceanography Center, 21 
Monterey (Prospero et al., 2002) is used to construct the H in equation (2). In addition, we utilize 22 
other data to further mask the non-dust areas, including the land cover from AVHRR (Hansen 23 
and DeFries, 2000) to mask the forest area and the soil depth data from the Food and Agriculture 24 
Organization of the United Nations to screen out the non-soil bare areas (i.e., soil depth less than 25 
10 cm) (http://www.fao.org/nr/land/soils/en/). We also exclude the bare surfaces covered by 26 
snow or with temperature below 260°K as dust source locations (Figure 2). 27 
 28 
Figure 3a-c shows the new dynamic source function (Sdynamic) in January and July averaged from 29 
2000 to 2007 and the July-to-January ratio. While there is little seasonal variation over the 30 
Saharan, Arabian, and Taklimakan deserts, Sdynamic varies with a magnitude often greater than a 31 
factor of 2 in many other source regions such as Sahel, Somalia, Thar desert, Western US, Chile, 32 
Australia, and South Africa (Figure 3c). For comparison, Figure 3d-f shows the previously used 33 
static source function (Sstatic, Figure 3d) and the ratio of Sdynamic to Sstatic for January (Figure 3e) 34 
and July (Figure 3f). Even though qualitatively both Sdynamic and Sstatic show similar high values in 35 
the Afro-Asian dust belt region and moderate-to-low values in other source regions (Figure 3a, 36 
3b, and 3d). Sdynamic is often different from Sstatic by a factor of 2 or more in many locations, such 37 
as Gobi desert, Karakum (east of Caspian Sea), Australia, and South America where Sdynamic is 38 
higher and some part of Saharan desert, Chotts, and Southern Gobi desert where Sdynamic is lower 39 
(Figure 3d and 3f).  40 
 41 
3.2. Relationship between dust source function, surface bareness, and topographic features 42 
 43 
Locations of major global dust source regions have been identified in previous studies using 44 
different criteria. For example, Prosopero et al. (2002) used the TOMS aerosol index data and 45 
Koven and Fung (2008) used various erodibility indices including topography, inverse elevation, 46 
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NDVI, surface roughness, and hydrologic state to recognize major source locations over the 1 
globe. In this study, we have selected 22 dust source regions based on both Prosopero et al. 2 
(2002) and Koven and Fung (2008) to analyze their seasonal variations. Geographical 3 
information of each region and its location are given in Table 1 and Figure 4. Note that our 4 
selected domain areas are not exactly the same as those in the previous studies since we included 5 
the NDVI data in determining desert emission area. The NDVI map of the selected dust source 6 
regions shows the heterogeneous land cover in the source region and its seasonality (Figure 5). 7 
Some are “permanent desert” (i.e., NDVI is less than 0.15 throughout year), such as Sahara, 8 
Arabia, Taklimakan, and Gobi deserts in group (I). The mean NDVI in these deserts is around 9 
0.1, far below our threshold value of 0.15. Other deserts have more seasonally variable NDVI 10 
(i.e., NDVI < 0.15 only during dry season), such as Sahel, Australia, Chinese Loess, South- and 11 
North-America, South Africa in groups (II) and (III), where the driest part of those region is 12 
almost always lower than 0.15 but the surrounding area has strong seasonal variability.  13 
 14 
The source function related parameters, emission, and aerosol optical depth of the considered 15 
source area is summarized in Table 2. As we indicated earlier, the source function S represents 16 
the probability of dust uplift, which depends on the degree of both bareness (B) and surface 17 
depressions (H). There is a wide the range of B and H, depending on source regions. We divide 18 
the 22 source regions into three groups according to the strength of B and H. Group (I) consists 19 
of permanent deserts, such as Bodéle and Arabian desert (Chotts), with high values of H and low 20 
variability of B. Almost half of the analyzed source regions fall into group (I). The remaining 21 
regions have different degree of seasonal variation of B. For those regions, we select the more 22 
active ones with high degree of H (> 0.1) in group (II), such as Thar, Lake Eyre, and Somalia, 23 
and less active ones with low H (< 0.1) in group (III), such as Namibia, Mexico, and Salt Lake. 24 
 25 
We examine the relationship between S, B, and H for selected dust regions and illustrate in 26 
Figure 6. The most distinctive characteristics in group (I) is the high percentage of bareness 27 
(>0.88) throughout the year. In group (I), both dynamic and static bareness are constantly high 28 
throughout the year. Topography depression H that affects to the emission efficiency varies by 29 
deserts i.e., 0.4 in Bodéle and 0.2 in Gobi. Bareness in groups (II) and (III) varies significantly 30 
from below 0.2 to above 0.9 depending on seasons, with an annual mean about 0.56. However, 31 
the behavior of Sdynamic between group (II) and (III) is quite different. The Sdynamic in group (II) 32 
varies significantly with time; the differences between the maximum and minimum values are as 33 
large as 0.4, 0.3, and 0.1 in Thar Desert, Lake Eyre, and Somalia Desert, respectively. The 34 
relatively large H (between 0.2 and 0.8) combined with the time-varying B results a substantial 35 
seasonality of the Sdynamic in group (II). In contrast, the seasonal change and the values of Sdynamic 36 
in group (III) are much less than those in group (II) despite the large seasonal change of B, due to 37 
the low degree of H in group (III) that damper the magnitude of seasonal variations and 38 
determine the low values of Sdynamic.  39 
 40 
4. Simulation of dust aerosol with dynamic source functions 41 
 42 
With the new Sdynamic, we use the GOCART model to simulate dust emissions and atmospheric 43 
distributions. GOCART is driven by the assimilated meteorological fields from the Goddard 44 
Earth Observing System Data Assimilation System (GEOS DAS) (Ginoux et al., 2001; Chin et 45 
al., 2002, 2009). In the GOCART model, aerosol advection is computed by a flux-form semi-46 
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Lagrangian method that is a second-order closure scheme for the boundary layer turbulent 1 
mixing and the moist convection is based on the cloud mass flux fields. Dry deposition includes 2 
gravitational settling as a function of aerosol particle size and air viscosity and surface deposition 3 
as a function of surface type and meteorological conditions. Wet deposition accounts for the 4 
scavenging of soluble species in convective updrafts and rainout/washout in large-scale 5 
precipitation. Radiative calculation is based on OPAC data set (Hess et al., 1998). Dust particle 6 
size distribution is described by eight size bins is in the size range from 0.1 to 10 µm in radius to 7 
take into account size dependent physical and optical processes. The eight size bins that describe 8 
size range are 0.1–0.18, 0.18–0.3, 0.3–0.6, 0.6–1, 1–1.8, 1.8–3, 3–6, and 6–10 µm (Chin et al., 9 
2009). The horizontal resolution of the model is 1° latitude by 1.25° longitude with 30 vertical 10 
sigma layers up to 10 hPa. In the present study two dust simulations are conducted from January 11 
2000 to December 2007, where the first simulation is with the static source function (Ginoux et 12 
al., 2001) and the other with the new dynamic source function.  13 
 14 
4.1. Dust emissions with dynamic and static source functions 15 
 16 
The monthly mean dust emission using both Sstatic and Sdynamic are plotted for January and July 17 
averaged from 2000 to 2007 (Figure 7). Even though most active dust source appears in dust 18 
belt, other hotspots appear to produce significant amount of dust in both static and dynamic 19 
source function simulations. Dust emission shows a wide range from 100 to 5000 mg m-2 day-1 20 
with strong seasonality in most emission regions. The effect of Sdynamic over Sstatic is more obvious 21 
with the absolute and relative differences between two methods (Figure 7c-d). The absolute 22 
difference of emissions is strongest in dust belt throughout year in the range between -500 and 23 
+500 (g m-2 day-1). The Sdynamic appears to produce a factor of two more dust emission than the 24 
Sstatic in several source regions including North America, Chile, Central Asia (Karakum Desert), 25 
and Sahel. Dust emission is reduced in some source areas such as Patagonia and China. The 26 
global total dust emission is 3245 Tg/year with Sdynamic and 2985 Tg/year with Sstatic, resulting 27 
8.7% higher emission in the dynamic source function. The emission in each region is 28 
summarized in Table 2. 29 
 30 
As equation (1) shows, the 10-m wind speed (u10) is the driving force for dust emission that is 31 
proportional to the third power of u10. Other parameters, including the surface bareness B, exert 32 
modulating effects. We compared dust emissions as a function of u10 with Sdynamic and Sstatic in 9 33 
selected source regions (3 for each group) in Figure 8. Since same meteorological fields are used 34 
for the simulation, the range of u10 is the same in two simulations. As expected, dust emissions 35 
from both source functions are well correlated with u10. The largest difference in emission 36 
amount between simulations with Sdynamic and Sstatic appears in group (II) (middle panels in Figure 37 
8), where the emission with Sdynamic is up to a factor of 2 higher than that with Sstatic. The 38 
difference of dust emission in group (I) regions (top panels in Figure 8) varies with locations; for 39 
example, the emissions are nearly identical in Bodéle but the difference is about 50% in Gobi 40 
and 20% in Saudi Arabian deserts (emission being higher with Sdynamic). In comparison, regions 41 
in group (III) (bottom panels in Figure 8) are generally less active with lower emissions rates and 42 
there are only marginal differences between the simulations with two different source functions.  43 
 44 
The major difference between Sdynamic and Sstatic is that Sstatic only considers the dust emissions 45 
from the bare ground but Sdynamic includes dust emissions from other areas that can be covered by 46 
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vegetation during growing seasons. To estimate the dust emission from both bare and vegetated 1 
land cover areas with Sdynamic, we grouped 12 land cover classes in Figure 2 into two categories 2 
of bare land (bare ground and shrub and bare in Figure 2) and vegetated land (the remaining land 3 
types). On a global annual average between 2000-2007, 88% (2861 Tg/year) of dust are emitted 4 
from the bare land, and 12% (384 Tg/year) from vegetated land (Figure 9). Three land types of 5 
wooded grassland, grassland, and cultivated crop land contribute to 0.2%, 10.2%, and 1.0% of 6 
dust emission, respectively.  7 
 8 
4.2. Comparisons of dust AOD with observations 9 
 10 
We compare model simulated AOD with observations from satellite sensors of the Multiangle 11 
Imaging Spectroradiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer 12 
(MODIS), and from ground-based Sunphotometer measurements of the Aerosol Robotic 13 
Network (AERONET). The AERONET (Holben et al., 1998) was established in the 1990s and 14 
currently consists of more than 200 sites over the globe. It provides direct measurement of AOD 15 
at multiple wavelengths from near UV to near IR during daytime with an uncertainty of 0.01–16 
0.02 at the visible wavelength. The MODIS instruments aboard the NASA Earth Observing 17 
System (EOS) Terra and Aqua satellites provide aerosol related parameters for the entire globe 18 
since 2000 and 2002, respectively. Along with the standard MODIS AOD product over relatively 19 
dark surfaces of land and ocean (Remer et al, 2005; Levy et al., 2010), the Deep Blue algorithm 20 
applied to Aqua retrieves AOD at 550 nm over bright land surfaces such as desert (Hsu et al., 21 
2004). The Deep Blue algorithm uses two blue channels of 0.412 µm and 0.470 µm, where 22 
surface reflectance is relatively small and their uncertainty is in the range of 25–30% (Hsu et al., 23 
2006). MISR is a multi angle multi-spectral instrument onboard Terra (Kahn et al., 1998, 2001). 24 
MISR validation study shows that the uncertainty of retrieved AOD is within ±0.05 or 20% 25 
compared to AERONET (Kahn et al., 2005). Another comparison study with AERONET in 26 
desert regions estimates that the estimated uncertainty of MISR AOD is 0.05-0.08 in visible 27 
wavelength (Martonchik et al., 2004). We use the Level 2 (version 2) monthly average data 28 
between 2000 and 2007 at sites over the major dust source regions. In this study, the satellite 29 
data are gridded to 1°!1° to be consistent with the model spatial resolution. All the comparisons 30 
are done with the AOD at 550 nm.  31 
 32 
Figure 10 compares the AOD from MISR (first column) and MODIS-Deep Blue (second 33 
column) with two model simulations using Sdynamic (third column) and Sstatic (fourth column) for 34 
July which is an active dust month. Here we include all aerosols simulated with GOCART 35 
(sulfate, black carbon, organic matter, dust, and sea-salt) for more appropriate comparisons to 36 
total AOD from satellite. However, the differences of AOD in these two model simulations (3rd 37 
and 4th column in Figure 10) are entirely due to the dust AOD simulated with different source 38 
functions. Although the seasonal variation patterns and the geographical distributions are similar, 39 
there are as much as factor of two differences in AOD between MISR and MODIS-Deep Blue, 40 
depending on region and season. For example, MODIS-Deep Blue AOD is 10% (Somalia) to 41 
factor of 3 (Thar desert) higher than MISR in July. The modeled AOD with the dynamic source 42 
function is from 40% (Thar desert and Tigris) to twice (Somalia and Karakum Desert) larger 43 
than the static source function simulation. Since the AOD from the static source function in 44 
general underestimates than the observed AOD, the increase of AOD in the dynamic source 45 
function indicates the improved AOD by the new source function.  46 
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 1 
Time series of the monthly mean total AOD from the model simulations are plotted along with 2 
the satellite observed AOD from MISR and MODIS-Deep Blue in 9 selected regions (Figure 11). 3 
During the peak season (July), simulated AOD from Sdynamic and Sstatic are similar in Bodéle and 4 
Gobi but are significantly different as much as factor of 2 in other regions, while the difference 5 
in January is less than 10 %. The correlation coefficients between modeled and MISR AODs are 6 
0.71-0.90 in groups (I) and (II), but the range is 0.46-0.68 in group (III). There is no significant 7 
change between model results with Sdynmic and Sstatic in group (I), because these are permanent 8 
deserts with similar emission rates. In group (II), the dynamic source function simulation 9 
enhances AOD as expected from the emission comparison and the dynamic source function run 10 
is better agreed with satellite in peak AOD season. The dynamic source function shows better 11 
statistical performance than the static source function i.e., the correlation coefficient is increased 12 
about 0.1 and the mean bias is reduced 0.1-0.3. Sahel region has strong seasonality in bareness 13 
and falls in group (II). It has high source function but the lower emission due to the weaker wind 14 
speed which is similar to the previous study by Ginoux et al. (2010). In group (III), dust AOD 15 
from two model simulations is much lower than satellite observation indicating that model has 16 
large discrepancies with observations in the region. Also it is worthy noting that the relationship 17 
between u10 and dust AOD is not as high as the one between u10 and dust emission, since AOD 18 
includes aerosols transported from other source regions.  19 
 20 
We also compared the modeled dust AOD with AERONET database (Figure 12). We selected 21 
coarse mode AOD from AERONET since it is mainly from dust. AERONET sites are selected to 22 
cover deserts around the world with good quality and temporal coverage (See Figure 4 for the 23 
location). Even though the dynamic source function does not show a dramatic improvement in 24 
the AERONET comparison, the new dynamic source function show some improvement of the 25 
AOD in group (II) including Australian, Indian, and Sahel region which are shown in the first 26 
two columns. Especially at the Tinga Tingana station in Australia, the correlation coefficient is 27 
improved from 0.22 to 0.64 and the mean bias is improved from 0.81 to 1.04 than the static 28 
source function. But the impact of the dynamic source function to other desert stations (third and 29 
fourth columns) is negligibly small.  30 
 31 
The global distributions of the absolute and relative errors of the two simulations are plotted in 32 
January and July (Figure 13a,b). DOD by dynamic source function is 0.02 larger than the static 33 
source function in Arabian, Central Asia, and India in July. In Taklimakan desert, DOD by 34 
dynamic source function is about 0.5 lower than the static source function in July. The absolute 35 
error between two is less than ±0.05 in most area for two seasons and their global mean 36 
difference is less than 2%. Even though the absolute error of DOD is not large, the relative 37 
difference between the two simulations is large in both January and July (Figure 13c,d). There 38 
are ±20% differences between two simulations not only in source regions but also their 39 
downwind area. The relative difference is more extended and larger in July than January. In 40 
summer (i.e., July in the Norther Hemisphere and January in Southern Hemisphere), the dynamic 41 
source function is larger than the static source function in most source regions except for Chotts 42 
and China.  43 
 44 
5. Discussion 45 
 46 
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In this study we choose a single NDVI threshold value of 0.15 globally to determine if the 1 
surface is bare or not. This value was chosen based on several observations over various desert 2 
surfaces that is around 0.15 (Tucker et al., 1991; Peters and Eve, 1995; Sobrino and Raissouni, 3 
2000; Bradley and Mustard, 2005). In reality, different bare surface should have different 4 
reflectance, and ideally the threshold NDVI should be variable determined by the characteristics 5 
of the bare surface, such as soil composition or surface roughness. However, currently there are 6 
no available best estimates on the spatial-varying threshold NDVI.  A sensitivity test using 7 
different threshold NDVI from 0.12 to 0.18 showed a linear relationship between the decrease of 8 
threshold NDVI and the increase of percentage bareness (e.g., if threshold NDVI is 0.12, B is 9 
increased approximately by 30%). Therefore, further investigation is needed to develop a 10 
regional dependent threshold NDVI.  11 
 12 
While NDVI identify bare ground using spectrally dependent light absorption on leaf surface, 13 
NDVI itself cannot distinguish the surfaces covered by stem or dead plants from bare ground, 14 
therefore it could falsely identify them as bare land in this study. Some previous studies 15 
introduced some methods to include the seasonality of land with stem or dead plant (Tegen et al., 16 
2002; Fairlie et al., 2007; Okin, 2008), however it remains difficult to quantify their coverage. 17 
This limitation needs to be improved in future study.  18 
 19 
The present study has shown impacts of the dynamic source function on dust emission even in 20 
coarser resolution of 1°"1°. It suggests that developing a dynamic source function with higher 21 
spatial resolution can be more beneficial for dust simulation, considering the high heterogeneity 22 
of the vegetation within the 1°"1° area. Such higher spatial resolution dust source function can 23 
be constructed with the current 8-km AVHRR NDVI data or with the finer resolution of the 24 
MODIS NDVI (e.g., 250 or 500 m resolution), which is available from 2000 to present, and will 25 
be easily applicable for finer resolution global or regional scale models that are widely used for 26 
air quality and aerosol transport studies.   27 
 28 
The use of Sdynamic and Sstatic in model simulated dust AOD shows noticeable differences in and 29 
near source regions especially in the group (II), where simulated AOD using Sdynamic is up to a 30 
factor of two higher than that using Sstatic with significantly improved statistics. On the other 31 
hand, global mean dust AOD values from dynamic and static source function are rather similar. 32 
This is mainly due to the fact that most dust is emitted in the group (I) source regions including 33 
Sahara desert, which are mostly permanent deserts with NDVI almost always below the 34 
threshold value, such that the Sdynamic and Sstatic are very similar over those dust source regions 35 
(Figure 3). Although the differences between using Sdynamic and Sstatic over group (I) and group 36 
(III) desert areas seem very small for the time period studied in this work, the NDVI-based 37 
Sdynamic is able to take into consideration of the change of dust source location and area due to the 38 
changes of land use and land cover. We have estimated that 88 % of dust emission is from the 39 
bare land and 12% from vegetated area (e.g., grassland and agriculture land), implying an 40 
application of using the NDVI-based approach to develop future dust source scenarios based on 41 
the projections of future land cover and land use change deduced from the change of climate and 42 
human activity scenarios.  43 
 44 
6. Summary 45 
 46 
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We have developed a global dynamic source function for estimating dust emissions using a time-1 
resolved surface bareness derived from the AVHRR NDVI. The 15-day surface bareness from 2 
1981 to 2007 at 1°"1° resolution is calculated as the ratio of the number of 8-km NDVI that is 3 
below 0.15 to the total number of 8-km NDVI pixels with the 1°"1° gridcell. The new dynamic 4 
surface bareness, together with the surface topographic depression feature and other surface 5 
characteristics (i.e., land cover type, soil depth, soil temperature, snow cover) are used to 6 
produce a time-dependent dust source functions to calculate dust emissions in the GOCART 7 
model.  8 
 9 
We have analyzed the factors that determine the seasonal variation and magnitude of Sdynamic over 10 
22 dust source regions over the globe. We have found that these regions can be divided into three 11 
groups in terms of the characteristics of surface bareness B and the degree of topographic 12 
depression H: I) permanent deserts where NDVI is almost always below 0.15, resulting in little 13 
seasonal variations of Sdynamic (e.g., Bodéle and Chotts), II) seasonal deserts where NDVI has 14 
large seasonality and H is high, resulting significant seasonal variations of Sdynamic (e.g., Thar, 15 
Somalia, and Sahel), III) deserts with low degree of topographic depression H where the large 16 
seasonal variation of NDVI has little influence on Sdynamic (e.g., Mexico and Namibia). 17 
 18 
We conducted two simulations with Sdynamic and Sstatic, repectively, from 2000 to 2007 with the 19 
GOCART model to test the impact of the Sdynamic on dust emission and distribution in the model. 20 
The model results have indicated that the dust emission calculated with Sdynamic can be a factor of 21 
two different from that calculated with Sstatic in some seasons over the group (II) dust source 22 
regions, such as Thar desert, Lake Eyre, Somalia, and Karakum deserts, while it has smaller 23 
effects on group (I) and (III) deserts. Evaluation of modeled AOD with remote sensing data from 24 
MISR, MODIS-Deep Blue, and AERONET has shown significantly higher correlation 25 
coefficients and lower biases of model calculated AOD with Sdynamic compared to that with Sstatic 26 
over group (II) regions and, to some less extent, over group (I) regions, while no improvements 27 
over group (III) regions. On the global average scale, the AOD from Sdynamic and Sstatic are very 28 
similar. 29 
 30 
With the dust emission calculated from Sdynamic, we have estimated that globally 88 % of dust is 31 
emitted from the bare land. Although the vegetated land, such as grassland and crop area, is a 32 
minor source of dust emission (12 %), they are most susceptible to the change of human 33 
activities and climate. Therefore, using the NDVI-based technique may develop a projection of 34 
future dust emission from the land cover and land use change scenarios. 35 
 36 
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Figure Caption 1 

Figure 1. Mean AVHRR-NDVI and bareness map for January and July averaged from 1981-2 
2007. 3 

Figure 2. Global distribution of topographical depression (H, dimensionless), soil depth (cm), 4 
and land cover classification. 5 

Figure 3. Distribution of static and dynamic source function and the differences between the two. 6 
Dynamic source function is averaged for January and July from 2000 to 2007. 7 

Figure 4. Location of the 22 dust source regions selected for the analysis. Regions for the in-8 
depth analysis are in red box and black dots indicate the location of AEROENT sites. 9 

Figure 5. Mean NDVI map in various source regions in January and July, averaged from 2000-10 
2007. 11 

Figure 6. Time series of monthly mean dynamic (red) and static (blue) source functions (S), 12 
topographic depression (H, in black), and surface bareness (B, in purple). Numbers in each panel 13 
are monthly mean of each variable. 14 

Figure 7. Month mean emission for January and July using (a) dynamic source function and (b) 15 
static source function. (c) Absolute and (d) relative difference in emission between dynamic and 16 
static source map. All plots are averaged in the period from 2000 to 2007. 17 

Figure 8. Relationships between emission and u10. Each dot is monthly mean values over the 18 
domain. 19 

Figure 9. Dust emission from bare land (top panel) and vegetated land (bottom panel). Plots are 20 
averaged in the period from 2000 to 2007. 21 

Figure 10. Mean aerosol optical depth map in various source regions in difference seasons 22 
averaged from 2000 to 2007. 23 

Figure 11. Time series of monthly mean AOD from dynamic (red) and static (blue) source 24 
functions, MODIS Deep Blue (black solid line), and MISR (black dotted line). R and B are the 25 
correlation coefficient and mean bias. Mean bias is defined as the ratio of the modeled AOD to 26 
MISR AOD. 27 

Figure 12. Time series of monthly mean AOD with dynamic (red) and static (blue) source 28 
functions, AERONET (black). R and B are the correlation coefficient and mean bias between 29 
modeled AOD to AERONET AOD. 30 

Figure 13. (a and b) Absolute and (c and d) relative differences of dust optical depth (DOD) 31 
between dynamic and static source functions in January and July. 32 

 33 

34 
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 1 

Table 1. Name and location of dust source regions. Type of deserts groups defined in this study 2 
is listed in the last column. 3 

 4 

Number Name Boundary (West-East, South-North) Group 

 1 Karakum (54.0E-65.0E,37.0N-42.0N) I 
2 Argentina (70.0W-67.0W,33.0S-30.0S) I 
3 Bodel (10.0E-20.0E,15.0N-20.0N) I 

 4 Chile (71.0W-67.0W,28.0S-19.0S) I 
5 Chotts (5.0E-10.0E,32.0N-35.0N) I 
6 Gobi (100.0E-105.0E,42.5N-45.0N) I 
7 Nile (29.0E-34.0E,28.0N-31.0N) I 
8 Oman (52.5E-57.5E,18.0N-21.0N) I 
9 Saudi_Arabia (47.5E-52.5E,20.0N-25.0N) I 

10 Tarim_Basin (75.0E-90.0E,35.0N-40.0N) I 
11 Tigris (42.5E-57.5E,28.0N-32.0N) II 
12 China_Loess (103.0E-110.0E,36.5N-39.0N) II 
13 Lake_Eyre (136.0E-140.0E,30.0S-25.0S) II 
14 Mojave (116.0W-113.0W,32.0N-35.0N) II 
15 Patagonia (72.0W-68.0W,51.0S-43.0S) II 
16 Sahel (0.0E-20.0E,13.0N-16.0N) II 
17 Somalia (45.0E-51.0E,8.0N-11.5N) II 
18 Thar (70.0E-74.0E,25.0N-29.0N) II 
19 Mexico (108.0W-103.0W,29.0N-33.0N) III 
20 Namibia (15.0E-19.0E,29.0S-23.0S) III 
21 Salt_Lake (115.0W-112.0W,39.0N-42.0N) III 
22 Botswana (24.0E-27.0E,22.0S-19.0S) III 

I 

I 

I 

 5 

 6 

7 



 16 

 1 

Table 2. Mean variables of regional average NDVI, surface bareness (B), degree of topographic 2 
depression (H), source function (S), 10-m wind speed (u10), annual emission (EMI, in mg m-2 3 
day-1), and AOD over 22 desert regions averaged from January 2000 to December 2007. Model 4 
calculated emission and AOD by static source function are shown in parenthesis. Satellite AOD 5 
from MISR and MODIS Deep Blue (in bracket) are also listed. 6 

Group Name NDVI B H S u10 EMI Modeled 
AOD 

Satellite 
AOD 

I Karakum 0.08 76.15 0.68 0.46 
(0.13) 

4.16 529.4 (132.4) 0.31 (0.16) 0.19 [0.25] 
I Argentina 0.08 41.71 0.36 0.06 

(0.03) 
4.82 139.2 (65.9) 0.02 (0.02) 0.09 [0.15] 

I 
 

Bodel 0.01 99.71 0.43 0.35 
(0.42) 

5.49 1035.3 (1067.3) 0.49 (0.55) 0.49 [0.54] 
I Chile 0.01 84.12 0.09 0.06 

(0.08) 
4.62 119.6 (93.2) 0.02 (0.02) 0.11 [0.17] 

I Chotts 0.06 56.44 0.32 0.20 
(0.30) 

4.50 369.8 (443.3) 0.30 (0.31) 0.27 [0.32] 
I Gobi 0.06 88.44 0.21 0.17 

(0.07) 
4.30 233.0 (167.0) 0.13 (0.13) 0.15 [0.12] 

I Nile 0.05 66.23 0.41 0.32 
(0.28) 

4.56 544.4 (381.3) 0.25 (0.21) 0.23 [0.31] 
I Oman 0.01 94.94 0.15 0.13 

(0.12) 
4.66 204.5 (155.9) 0.25 (0.20) 0.37 [0.26] 

I Saudi_Arabia 0.01 89.49 0.29 0.26 
(0.26) 

4.32 373.0 (305.6) 0.33 (0.27) 0.43 [0.31] 
I Tarim_Basin 0.04 88.21 0.17 0.13 

(0.16) 
4.78 290.6 (881.3) 0.17 (0.35)       - [0.39] 

II Tigris 0.04 75.88 0.32 0.23 
(0.15) 

4.45 290.5 (209.6) 0.28 (0.22) 0.25 [0.27] 
II China_Loess 0.16 65.51 0.11 0.06 

(0.16) 
4.13 94.9 (385.7) 0.14 (0.20) 0.24 [0.23] 

II Lake_Eyre 0.07 55.69 0.38 0.21 
(0.14) 

4.31 282.4 (194.5) 0.04 (0.03) 0.11 [0.15] 
II Mojave 0.06 47.73 0.36 0.17 

(0.08) 
3.87 157.5 (77.3) 0.05 (0.04) 0.11 [0.30] 

II Patagonia 0.14 43.00 0.24 0.08 
(0.04) 

6.16 289.1 (203.3) 0.01 (0.01) 0.06 [0.19] 
II Sahel 0.08 73.46 0.40 0.21 

(0.20) 
4.74 556.6 (427.3) 0.54 (0.55) 0.47 [0.62] 

II Somalia 0.02 48.45 0.24 0.14 
(0.06) 

6.48 758.3 (297.1) 0.16 (0.08) 0.27 [0.31] 
II Thar 0.17 37.48 0.77 0.37 

(0.25) 
3.55 379.0 (200.5) 0.22 (0.16) 0.39 [0.59] 

III Mexico 0.11 21.58 0.08 0.01 
(0.01) 

4.21 14.1 (10.2) 0.02 (0.02) 0.13 [0.17] 
III Namibia 0.06 52.95 0.09 0.08 

(0.07) 
4.61 123.6 (137.7) 0.02 (0.02) 0.12 [0.15] 

III Salt_Lake 0.33 27.86 0.03 0.01 
(0.00) 

4.18 5.7 (5.0) 0.03 (0.03) 0.12 [0.16] 
III 

I 

I 

I 

Botswana 0.30 4.10 0.10 0.01 
(0.00) 

3.83 7.1 (0.0) 0.00 (0.00) 0.17 [0.16] 

 7 

 8 

 9 

10 
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 2 

 3 

Figure 1. Mean AVHRR-NDVI and bareness map for January and July averaged from 1981-4 
2007. 5 
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 2 

Figure 2. Global distribution of topographical depression (H, dimensionless), soil depth (cm), 3 
and land cover classification. 4 

5 
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Figure 3. Distribution of static and dynamic source function and the differences between the two. 2 
Dynamic source function is averaged for January and July from 2000 to 2007.  3 

4 



 20 

 1 

 2 

 3 

 4 

 5 
 6 

Figure 4. Location of the 22 dust source regions selected for the analysis. Regions for the in-7 
depth analysis are in red box and black dots indicate the location of AEROENT sites.  8 
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Figure 5. Mean NDVI map in various source regions in January and July, averaged from 2000-2 
2007. 3 

4 
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Figure 6. Time series of monthly mean dynamic (red) and static (blue) source functions (S), 2 
topographic depression (H, in black), and surface bareness (B, in purple). Numbers in each panel 3 
are monthly mean of each variable.  4 
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 1 

Figure 7. Month mean emission for January and July using (a) dynamic source function and (b) 2 
static source function. (c) Absolute and (d) relative difference in emission between dynamic and 3 
static source map. All plots are averaged in the period from 2000 to 2007. 4 
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Figure 8. Relationships between emission and u10. Each dot is monthly mean values over the 2 
domain. 3 

4 
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Figure 9. Dust emission from bare land (top panel) and vegetated land (bottom panel). Plots are 2 
averaged in the period from 2000 to 2007. 3 
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Figure 10. Mean aerosol optical depth map in various source regions in difference seasons 2 
averaged from 2000 to 2007.   3 

4 
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Figure 11. Time series of monthly mean AOD from dynamic (red) and static (blue) source 2 
functions, MODIS Deep Blue (black solid line), and MISR (black dotted line). R and B are the 3 
correlation coefficient and mean bias. Mean bias is defined as the ratio of the modeled AOD to 4 
MISR AOD.   5 
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Figure 12. Time series of monthly mean AOD with dynamic (red) and static (blue) source 2 
functions, AERONET (black). R and B are the correlation coefficient and mean bias between 3 
modeled AOD to AERONET AOD.  4 
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Figure 13. (a and b) Absolute and (c and d) relative differences of dust optical depth (DOD) 2 
between dynamic and static source functions in January and July. 3 


